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Abstract 

The Zoom-in and Zoom-out operators play an important role in the model of granular 
computing based on covering. In this paper, a new Zoom-in operator is defined, the 
combination operators formed by the Zoom-in and Zoom-out operators on the (granulated) 
universe of discourse are presented, and their relationships to covering rough set, 
topological space, and Galois connection are discussed. In particular, it is proved that a pair 
of approximation operators on the universe of discourse obtained by the combination of the 
Zoom-in operator and Zoom-out operator, are precisely the second type of covering-based 
lower and upper approximation operators. 
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1. Introduction 

In the real world, information is often granular and elements. It is 
within an information granule has to be dealt with as a whole rather 
than individually. The idea of information granularity has been explored 
in many fields, such as rough sets, fuzzy sets, cluster analysis, database, 
machine learning, and data mining [2, 4, 8, 15, 16, 19]. In recent years, 
there is a renewed interest in granular computing [1, 3, 5, 10, 14, 17, 18], 
and it has become increasingly important in information processing. 

The model of granular computing can be regarded as a conceptual 
model or a mathematical model. Granular computing model is 
constructed by the concept of granular and the relevant operative symbol, 
and is used to reflect and describe the universe of discourse (i.e., real 
prototype) of various factors, forms, and quantitative relationships. The 
three major granular computing models are the words computing models 
[13], rough sets models [18], and the quotient space models [1]. Rough 
sets models maybe the most popular ones. In these models, many notions 
of granular computing can be defined and analyzed appropriately. In 
[14], Yao introduced a model of granular computing based on a partition 
of (or equivalent, a equivalent relation on) the universe of discourse. In 
[5], Ma generalized Yao’s model from restricting equivalence relation to 
reflexive binary relation. On the other hand, She [12] extended Yao’s 
model from partition to arbitrary covering on the universal of discourse. 

This paper can be regarded as a further research on the covering 
model in [12]. We define a new Zoom-in operator and study its properties. 
As we will see that different combinations of Zoom-in and Zoom-out 
operators form different rough approximations on the universe of 
discourse and granulated universe of discourse, respectively. Specially, 
we prove that a pair of approximation operators (on the universe of 
discourse) obtained by the combination of the Zoom-in operator and 
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Zoom-out operator, are precisely the second type of covering based lower 
and upper approximation operators [7, 17, 18]. We also discuss the 
relationships between the operators stated above, topological space, and 
Galois connection. The content are arranged as follows. In Section 2, we 
recall some notions used in this paper and define a new Zoom-in 
operator. In Section 3, we study the combination operators formed by the 
Zoom-in and Zoom-out operators on the universe of discourse, and discuss 
relationships between these operators and covering rough set, topological 
space, and Galois connection. In Section 4, we research the combination 
operators formed by the Zoom-in and Zoom-out operators on the 
granulated universe of discourse, and discuss relationships between 
these operators and covering rough set, topological space, and Galois 
connection. 

2. New Zoom-in Operator 

In this section, we shall recall some notions, notations used in this 
paper and investigate a new Zoom-in operator. 

Let U be a non-empty universe of discourse, C is a family of non-
empty subsets of U. If ,UC =∪  then C is called a covering of U. Let C be 
a finite covering on U. For each ,Ux ∈  the family 

( ) { },,,, KSKSSxCSKxCKxMd =⇒⊆∈∈∀∈∈=  

is called the minimal description of x. C is called unary if for each ,Ux ∈  
( ) CxMd ;1=  is called representative if for each ,CK ∈  there exists a 

Ux ∈  such that ., SKSxCS ⊆⇒∈∈∀  These definitions can be 

found in the literature [20]. 

Definition 2.1 ([13]). Let C be a finite covering on U. The mapping 
UC 22: →ω  

( ) ( ){ },,2 XxMdxXX C ⊆=ω∈∀  

is called a Zoom-in operator. 
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Proposition 2.1 ([13]). Let C be a finite covering on U. The Zoom-in 
operator has the following properties: 

(1) ( ) ( ) .2, UC =ω∅=∅ω  

(2) ( ) ( ) ( )YXYXYX C ωω=ω∈∀ ∪∪,2,  if and only if C is unary. 

(3) ( ) ( ) ( ).YXYX ωω=ω ∩∩  

(4) ( ) ( )cc XX ω=ω  if and only if C is unary. 

(5) ( ) ( )YXYX ω⊆ω⇔⊆  if and only if C is representative. 

Definition 2.2 ([13]). Let C be a finite covering on U. Then the pair 

( ),, aprapr  where CUaprapr 22:, →  

( ) { } ( ) { },,,2 AXCXAaprAXCXAaprA jjii
U ⊆∈=∅≠∈=∈∀ ∩  

is called a Zoom-out operator. 

In the following, we shall give a new Zoom-in operator based on 
covering and study its properties. 

Definition 2.3. Let C be a finite covering on U. The mapping C2:µ  

U2→  

( ) { },,,2 XKCKKXX C ∈∈=µ∈∀ ∪  

is called a Zoom-in operator. 

Proposition 2.2. Let C be a finite covering on U. Then for each ,2CX ∈  

( ) ( ).XX µ⊆ω  

Proof. Let ( ),Xx ω∈  then there exists a CK ∈  such that ( ).xMdKx ∈∈  

So ( ) { }.XKKXx ∈=µ∈ ∪  By the arbitrariness of x, we get 

( ) ( ).XX µ⊆ω  
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The following example shows that the converse inclusion does not 
hold generally. Thus, the Zoom-in operator defined above is different 
from that in [12]. 

Example 2.1. Let { } { } { } { },,,,,,,,,, 321 dbKcaKbaKdcbaU ====  

{ }.,, 321 KKKC =  Then { }( ) { } { }( ) { },,,,,, 311 dbaKKbaK =µ=µ  while 

( ) { }( ) { }.,,, 311 dbKKK =ω∅=ω  

Remark 2.1. Let C is a partition on U. It is easily seen that ( ) ( )XX ω=µ  

for each .UX ⊆  Thus by [12], the operator µ  can also be regarded as a 

generalization of the corresponding operator in [14]. Indeed, for each 
( ) { },XKCKXx ∈∈=µ∈ ∪  then there exists XK ∈  such that 

∈x .K  Because C is a partition of U, thus ( ) ,KxMdx =∈  i.e., 

( ).Xx ω∈  By the arbitrariness of x, we get ( ) ( ).XX ω⊆µ  

The next proposition lists some properties of the Zoom-in operator. 

Proposition 2.3. Let C be a finite covering on U. The Zoom-in operator 
UC 22: →µ  have the following properties: 

(1) ( ) ( ) .22; UC =µ∅=∅µ  

(2) ( ) ( ).YXYX µ⊆µ⇒⊆  

(3) ( ) ( ) ( ).YXYX µµ=µ ∪∪  

(4) ( ) ( ).cc XX µ⊆µ  

(5) Let ,CX ∈  then { }( ) .XX =µ  

Proof. Property (1) is obvious from the definition. 

(2) For each ( ) { },XKKXx ∈=µ∈ ∪  there exists XKx ∈  such 

that .xKx ∈  Since ,YX ⊆  then ,YKx x ∈∈  i.e., ( ).Yx µ∈  
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(3) By the definition, we have 

( ) YKxXKxYXKxYXx ∈∈∈∈⇔∈∈⇔µ∈ or∪∪  

( ) ( ).YXx µµ∈⇔ ∪  

(4) For all ( ) ,cXx µ∈  we have Kx ∈/  for each .XK ∈  Because C     

is a covering of U, thus there exists a cXXCH ∪=∈  such that 

,cXHx ∈∈  so ( ).cXx ω∈  

(5) Straightforward. 

The following example show the reverse inequality of (4) does not 
hold in general. 

Example 2.2. Let { } { } { } { }.,,,,,,,, 2121 KKCcaKbaKcbaU ====  

Taking { },1KX =  then { },2KX c =  therefore ( ) { } { } ( )., cc XcacX µ=≠=µ   

The property (3) in Proposition 2.1 does not hold as we show in the 
next example. 

Example 2.3. Let { } { } { } { }.,,,,,,,, 2121 KKCcaKbaKcbaU ====  

Considering { } { }., 21 KYKX ==  Then ( ) ( ),YXa µµ∈ ∩  but ( )YXa ∩µ∈/  

( ).∅µ=  

3. The Approximation Operators on U2  

In [7], the second type of covering-based rough sets is introduced. For 
each ,UX ⊆  the covering lower and upper approximations are defined 

as follows: 

{ } { }.,;, ∅≠∈=⊆∈= ∗
∗ XKCKKXXKCKKX ∩∪∪  

The follow theorem shows that the lower and upper approximations are 
precisely the combinations of the Zoom-in and Zoom-out operators. 
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Proposition 3.1. Let C be a finite covering on U and .UA ⊆  Then 

(1) ( ) { } .∗=∅≠∈=µ XAXCXAapr ∩∪D  

(2) ( ) { } .∗=⊆∈=µ XAXCXAapr ∪D  

Proof. (1) ( ) { ( )} { }.∅≠∈=∈∈=µ AXCXAaprXCXAapr ∩∪∪D   

(2) ( ) ( ){ } { }.AXCXAaprXCXAapr ⊆∈=∈∈=µ ∪∪D  

Besides, we can easily obtain the following corollary: 

Corollary 3.1. Let C be a finite covering on U and .UA ⊆  Then 

(1) ( ) { ( )} { ,, ∅≠∈∃∈=∈∈∈=µ AXCXUxAaprKxUxAapr ∩D  

}.Xx ∈  

(2) ( ) ( ){ } { }., AXxCXUxAaprKxUxAapr ⊆∈∈∃∈=∈∈∈=µ D  

(3) If ,CA ∈  then ( ) .AAapr =µ D  

Corresponding to the properties of the second type of covering lower 
and upper approximations listed in the literature [21], we have the 
following results: 

Proposition 3.2. Let C be a finite covering on U. Then 

(1) ( ) ( ) ( ) ( ) .,,, ∅=∅µ∅=∅µ=µ=µ apraprUUaprUUapr DDDD  

(2) ( ) ( ).AaprAAapr DD µ⊆⊆µ  

(3) ( ) ( ) ( ) ( ).; BaprAaprBABaprAaprBA DDDD µ⊆µ⇒⊆µ⊆µ⇒⊆   

(4) ( ) ( ) ( ).BaprAaprBAapr D∪D∪D µµ=µ  

(5) ( ) ( ) ( )BaprAaprBAapr D∩D∩D µµ=µ  if and only if C is unary. 

(6) ( ) ( )( ) ( ).AaprAaprapr DDD µ=µµ  
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It is well-known that there exists closed interrelationship between 
the theory of topologies and that of covering-based rough sets (resp., 
granular computing). Just before exhibiting this relation, we first give an 
interesting topological approached description for unary covering. 

Recall that a non-empty set ( )XPB ⊆  is a base for a topology J  on 

X if and only if ,X=B∪  and for each B∈21, BB  and each 

,21 BBx ∩∈  there exists a B∈3B  such that .213 BBBx ∩⊆∈  

Proposition 3.3. Let C be a covering on CandU ,  is unary if and only if 

C is a base for some topology on U. 

Proof. Let C be a unary covering. For all ,, 21 CKK ∈  if ,21 KKx ∩∈  

then ( ).2121 yMdKKx KKy ∩∪∩ ∈=∈  Thus, there exists a 1Ky ∈ 2K∩  

such that ( ) .21 KKyMdx ∩⊆∈  That means, C is a base for some 

topology on U. 

On the other hand, let C be a base for some topology on U. For each 
,Ux ∈  taking ( )., 21 xMdKK ∈  To prove that C is unary, it suffices to 

check that .21 KK =  Indeed, by ,21 KKx ∩∈  we have a CK ∈  such 

that .21 KKKx ∩⊆∈  By the definition of ( ),xMd  we obtain that 

21 KKK ==  as desired. 

Definition 3.1. Let U be a non-empty universal of discourse. Then the 

mapping UUi 22: →  satisfying the following conditions: ,, UBA ⊆∀  

(1) ( ) .UUi =  

(2) ( ) ( ) ( ).BiAiBAi ∩∩ =  

(3) ( ) ,AAi ⊆  

is called an interior operator on U. In addition, i is called a topological 
interior operator on U if it further satisfies: 
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(4) ( )( ) ( ).AiAii =  

Dually, one can define the so called (topological) closure operator. 

Remark 3.1. By Proposition 3.3, we observe easily that the operator 

apru D  is a closure operator on U. If C is unary, then the operator 

aprDµ  is a topological interior operator on U. 

Definition 3.2 ([13]). Let U be a non-empty universal of discourse. Then 

the pair ( ),, gf  where ,22:, UUgf →  is said to be a Galois connection 

on U, if it satisfies the following rules: 

(1) ( ) ( ) ( ) ( ),, 212121 AgAgAfAfAA ⊆⊆⇒⊆  

(2) ( )( ) ( )( ) ., AAfgAAgf ⊇⊆  

Theorem 3.1. Let U be a non-empty universe of discourse, C be a unary 

covering on U. Then the pair ( )aprapr DD µµ ,  is a Galois connection on U 

if and only if C is a partition on U. 

Proof. Necessity: To prove C is a partition on U, we need to check 

.,, jijiji XXXXCXX =⇒∅≠∈∀ ∩  

In fact, taking ji XXx ∩∈  and assuming ( ) { }.kXxMd =  Then by the 

definition of ( ),xMd  we have iXX ⊆k  and .jXX ⊆k  Because 

( )aprapr DD µµ ,  is a Galois connection, thus ( )( ) .kk XXaprapr ⊆µµ DD  

From Proposition 3.1 and Corollary 3.1 (3), we have 

( )( ) { }.∅≠∈=µµ kk XXCXXaprapr ∩∪DD  

By ,ji XXXx ∩∩k∈  we have 

( )( ) ., kk XXapraprXX ji ⊆µµ⊆ DD  

Thus .kXXX ji ==  
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Sufficiency: Let C is a partition on U. Then ω=µ  by Remark 2.1. Thus 

the sufficiency has been proved by Proposition 7 in [14]. 

4. The Approximation Operators on C2  

In this section, we examine the relationships of a topological spaces 
and different combination operators formed by the Zoom-in and Zoom-out 
operators. Furthermore, we study the dual Galois connections formed by 
these combination operators. 

Proposition 4.1. Let C be a finite covering on U and .2CX ⊆  Then 

(1) ( ) { }., ∅≠∈∃∈=µ ii KSXKCSXapr ∩D  

(2) ( ) { }., XKKSCSXapr ii ∈⊆∈=µ ∪D  

Proof. By the definition, we have 

( ) { ( ) } { }., ∅≠∈∃∈=∅≠µ∈=µ ii KSXKCSXSCSXapr ∩∩D  

( ) { ( )} { }., XKKSCSXSCSXapr ii ∈⊆∈=µ⊆∈=µ ∪D  

The following proposition lists the properties of the operators ,aprDµ  

.aprDµ  

Proposition 4.2. Let C be a finite covering on U. For any ,2, CYX ∈  

(1) ( ) ( ) ( ) ( ) .,,22,22 ∅=∅µ∅=∅µ=µ=µ DDDD aprapraprapr CCCC  

(2) ( ) ( )., XaprXaprX µµ⊆ DD  

(3) ( ) ( ) ( ) ( )., YaprXaprYaprXaprYX µ⊆µµ⊆µ⇒⊆ DDDD  

(4) ( ) ( ) ( ).YaprXaprYXapr µµ=µ D∪D∪D  

(5) ( ) ( )( ) ( ).XaprXaprapr µ=µµ DDD  
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Proof. (1)-(3) are straightforward. 

(4) By the definition, we have 

( ) ∅≠∈∃⇔µ∈ ii KSYXKYXaprS ∩∪∪D ,  

∅≠∈∃∅≠∈∃⇔ iiii KSYKKSXK ∩∩ ,or,  

( ) ( )YaprSXaprS µ∈µ∈⇔ DD or  

( ) ( ).YaprXaprS µµ∈⇔ D∪D  

(5) ,2CX ∈∀  

( ) ( )( ) ( ){ }XaprKKSCSXaprapr µ∈⊆∈=µµ D∪DD ,  

{ }XMMKKSCS ∈⊆⊆∈= ,, ∪∪  

{ }XMMSCS ∈⊆∈= ,∪  

( ).Xapr µ= D  

Remark 4.1. It is proved in [14] that the Zoom-in operator ω  possess the 
property (4) only when C being a unary covering. In addition, it is easily 

seen that the operator µDapr  indeed preserve the arbitrary unions. 

The next example shows that the multiplication and idempotency of 
the operator µDapr  are no longer valid. 

Example 4.1. Let { } { } { } { },,,,,,,,,, 321 dbKcaKbaKdcbaU ====  

{ }.,, 321 KKKC =  

Letting { } { },,, 321 KKYKX ==  then ( ) ( ).1 YaprXaprK µµ∈ D∩D  

But ( ) .∅=µ YXapr ∩D  Thus ( ) ( ) ( ).YXaprYaprXapr ∩DD∩D µ≠µµ  

Taking { }.3KX =  It is easy to check that ( ( ))XapraprK µµ∈ DD2  

but ( ) .2 ∅=µ∈/ XaprK D  
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Definition 4.1. Let U be a non-empty domain of discourse. 

(1) A function CCi 22: →  it is called a pretopological interior 

operator on C2  if for each :2, CYX ∈  

(I) ( ) .22 CCi =  

(II) ( ) ( ).YiXiYX ⊆⇒⊆  

(III) ( )( ) ( ).XiXii =  

(2) A function CCcl 22: →  it is called a pretopological closure 

operator on C2  if for each :2, CYX ∈  

(I) ( ) .∅=∅cl  

(II) ( ) ( ) ( ).YclXclYXcl ∪∪ =  

(III) ( ).XclX ⊆  

Remark 4.2. By Proposition 4.2, we observe easily that the operator 

( )µµ DD aprapr .,resp  is a pretopological interior (resp., closure) 

operator on .2C  

The following proposition exhibits us the relationship between the 

operators µµ DD aprapr ,  and Galois connection. 

Theorem 4.1. Let U be a non-empty universe of discourse, C be a unary 

covering on U. Then the pair ( )µµ DD aprapr ,  is a Galois connection if 

and only if C is a partition on U. 

Proof. Necessity: To prove C is a partition on U, we need to check 

.,, jijiji XXXXCXX =⇒∅≠∈∀ ∩  
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In fact, taking ji XXx ∩∈  and assuming ( ) { }.kXxMd =  Then by the 

definition of ( ),xMd  we have iXX ⊆k  and .jXX ⊆k  Because 

( )µµ DD aprapr ,  is a Galois connection, thus 

({ })( ) { }.kk XXaprapr ⊆µµ DD  

By Proposition 2.3 (5) and Proposition 4.2, we have ({ }) =µ kXapr D  

( ).kXapr  So, 

({ })( ) ( ){ }∅≠∈∃∈=µµ ii KSXaprKCSXaprapr ∩DD ,kk  

{ }∅≠⊆∈∃∈= iii KSXKCKCS ∩,and k  

{ } { }.kk XKSCS ⊆∅≠∈= ∩  

Because ,ji XXXx ∩∩k∈  thus 

({ })( ) { }., kk XXapraprXX ji ⊆µµ∈ DD  

So, kXXX ji ==  as desired. 

Similar to Theorem 3.1, the sufficiency has been proved by Proposition 
12 in [14]. 

5. Conclusion 

We define a new Zoom-in operator and consider the combinations of 
Zoom-in and Zoom-out operators [12]. It is proved that the combination of 
Zoom-in operator with Zoom-out operator (resp., Zoom-out operator with 
Zoom-in operator) form a pair of approximation operators on the (resp., 
granulated) universe of discourse. In particular, it is shown that the 
approximation operators on the universe of discourse are precisely the 
second type of covering-based approximation operators. In addition, we 
establishes the interrelationship between these approximation operators, 
topological spaces, and Galois connections. 
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